无线循证前沿 | 单心房无导线起搏:最新数据惊艳亮相,引领SND治疗新趋势!

本文转载自:雅培律动心声

引言

在心律失常治疗领域,AVEIR™主动固定无导线起搏技术正以前所未有的速度革新着传统治疗模式。继2025 HRS多项研究数据的发布,5月底最新发表于JICE (Journal of Intervention Cardiac Electrophysiology)的一篇多中心临床研究,以详实数据,再次印证了单心房无导线起搏器AVEIR™AR在真实临床环境下的卓越表现,本期无线循证前沿,将聚焦这篇最新文献的核心亮点、邀请大家进一步了解这项创新疗法,并共同探讨心房无导线起搏的发展前景。


背景介绍

  • 统的无导线起搏器主要用于心室起搏,双腔无导线起搏系统(如AVEIR™DR)已逐步应用于临床,包括独立的心房和心室设备

  • 腔心房起搏在临床上较少见,因为存在未来的治疗升级问题。本研究旨在评估AVEIR™AR心房无导线起搏器用于治疗孤立性的窦房结功能障碍(SND)的初始真实世界使用情况


研究方法

  • 研究对象:三家中心入选了75名患有窦房结功能障碍且PR间期正常、房室传导正常的患者,52%为男性,平均年龄72±13 。这些患者在美国正式获批上市后接受了AVEIR™AR心房无导线起搏器的植入

  • 植入过程:录了手术特征,包括手术持续时间、X光透视时间等,并在植入前、释放后以及出院前测量了电学参数(阈值、感知和阻抗)。同时观察了急性并发症和30天内的手术或设备相关并发症


核心亮点

  • 植入过程顺利:100%的植入均获成功;83%的AVEIR™AR植入位置在右心房耳基部;因独特的固定前Mapping功能,95%的植入无需重新定位

  • 手术效率惊人:个手术时间平均36±33分钟,其中AVEIR™AR的关键植入过程耗时 21±14 分钟,X 光透视时间总计7±8分钟

  • 电学性能卓越:0.4ms脉冲下,起搏阈值、感知和阻抗在出院前均较释放时显著改善:起搏阈值从 1.2±1.2 V 降至 0.6±0.6 V,感知从 2.2±0.9 mV 升至 2.9±1.5 mV

  • 安全性超乎想象:整个 30 天观察期内,无一例急性并发症发生,也未出现任何需要再次干预的设备相关性能问题


讨论

  • 植入效率和安全性:AVEIR™AR的植入过程安全高效,手术时间和透视时间较短,主要由于避免了传统经静脉起搏器的复杂操作,无需制作囊袋等步骤

  • 电学性能:与术中释放时相比,出院时的起搏阈值和感知均有显著改善,可能是由于短期内螺旋穿透引起的心肌急性损伤和炎症的缓解。阻抗测量值在整个过程中保持稳定,表明螺旋与心肌接触良好

  • 长期稳定性:管本研究仅观察了30天内的结果,但在之前的一项临床试验中观察到了长期植入的稳定性


结论

AVEIR™AR心房无导线起搏器凭借简洁高效的植入手术、优异的电学性能以及全方位的安全保障,无疑是 SND 治疗领域冉冉升起的新星。它不仅重塑了心房起搏的治疗格局,更为医疗专业人士提供了极具前景的治疗新选择,同时为无数患者带来了重获健康心律的希望之光


扫描二维码,了解原文更多信息



参考文献

上下滑动查看

1. Tjong FVY, Reddy VY. Permanent leadless cardiac pacemaker therapy:

a comprehensive review. Circulation. 2017;135(15):1458–70.

https:// doi. org/ 10. 1161/ CIRCU LATIO NAHA. 116. 025037.

2. Sattar Y, et al. Complications of leadless vs conventional (lead)

artificial pacemakers – a retrospective review. Journal of Community

Hospital Internal Medicine Perspectives. 2020;10(4):328–33.

https:// doi. org/ 10. 1080/ 20009 666. 2020. 17869 01.

3. Knops RE, et al. A dual-chamber leadless pacemaker. N Engl J

Med. 2023. https:// doi. org/ 10. 1056/ NEJMo a2300 080.

4. Ip JE, et al. Atrioventricular synchrony delivered by a dual-chamber

leadless pacemaker system. Circulation. 2024. https:// doi. org/

10. 1161/ CIRCU LATIO NAHA. 124. 069006.

5. Hindricks G, et al. Six-month electrical performance of the first

dual-chamber leadless pacemaker. Heart Rhythm. 2024. https://

doi. org/ 10. 1016/j. hrthm. 2024. 04. 091.

6. Banker RS, et al. Retrieval of chronically implanted dual-chamber leadless

pacemakers in an ovine model. Circ Arrhythm Electrophysiol.

2023;16(10):e012232. https:// doi. org/ 10. 1161/ CIRCEP. 123. 012232.

7. Rashtian M, et al. Preclinical safety and electrical performance

of novel atrial leadless pacemaker with dual-helix fixation. Heart

Rhythm. 2022;19(5):776–81. https:// doi. org/ 10. 1016/j. hrthm.

2022. 01. 021.

8. Nielsen JC, et al. A comparison of single-lead atrial pacing

with dual-chamber pacing in sick sinus syndrome. Eur Heart J.

2011;32(6):686–96. https:// doi. org/ 10. 1093/ eurhe artj/ ehr022.

9. Nadeem B, et al. Outcomes of concurrent and delayed leadless

pacemaker implantation following extraction of infected cardiovascular

implantable electronic device. J Interv Card Electrophysiol.

2024. https:// doi. org/ 10. 1007/ s10840- 024- 01960-2.

10. Reddy VY, et al. 1-Year outcomes of a leadless ventricular pacemaker:

the LEADLESS II (phase 2) trial. JACC Clin Electrophysiol.

2023;9(7 Pt 2):1187–9. https:// doi. org/ 10. 1016/j. jacep.

2023. 01. 031.

11. Reddy VY, et al. Primary results on safety and efficacy from the

LEADLESS II-phase 2 worldwide clinical trial. JACC Clin Electrophysiol.

2022;8(1):115–7. https:// doi. org/ 10. 1016/j. jacep. 2021. 11. 002.

12. Sundaram S, Alyesh D, Walker L, Zipse MM. The 1(st) implantation

of an atrial only leadless pacemaker in right atrial appendage.

J Interv Card Electrophysiol. 2023;66(9):1955–8. https:// doi. org/

10. 1007/ s10840- 023- 01644-3.

13. Ferrick AM. Vasovagal syncope successfully treated with an atrial

leadless pacemaker. HeartRhythm Case Reports. 2024;10(9):691–

2. https:// doi. org/ 10. 1016/j. hrcr. 2024. 08. 011.

14. Haghjoo M, Nikoo MH, Fazelifar AF, Alizadeh A, Emkanjoo

Z, Sadr-Ameli MA. Predictors of venous obstruction following

pacemaker or implantable cardioverter-defibrillator implantation:

a contrast venographic study on 100 patients admitted for

generator change, lead revision, or device upgrade. Europace.

2007;9(5):328–32. https:// doi. org/ 10. 1093/ europ ace/ eum019.

15. Zimetbaum P, Carroll BJ, Locke AH, Secemsky E, Schermerhorn

M. Lead-related venous obstruction in patients with implanted cardiac

devices: JACC review topic of the week. J Am Coll Cardiol.

2022;79(3):299–308. https:// doi. org/ 10. 1016/j. jacc. 2021. 11. 017.

16. Nowak B, Misselwitz B, I. o. Q. A. H. Expert Committee Pacemaker.

Effects of increasing age onto procedural parameters in

pacemaker implantation: results of an obligatory external quality

control program. Europace. 2009;11(1):75–9. https:// doi. org/ 10.

1093/ europ ace/ eun293.

17. Nair DG, et al. Early real-world implant experience with a helixfixation

ventricular leadless pacemaker. J Interv Card Electrophysiol.

2024. https:// doi. org/ 10. 1007/ s10840- 024- 01791-1.

18. Roberts PR, et al. A leadless pacemaker in the real-world setting:

the Micra Transcatheter Pacing System Post-Approval Registry.

Heart Rhythm. 2017;14(9):1375–9. https:// doi. org/ 10. 1016/j.

hrthm. 2017. 05. 017.

19. El-Chami MF, et al. Leadless pacemakers at 5-year follow-up: the

Micra transcatheter pacing system post-approval registry. Eur Heart

J. 2024;45(14):1241–51. https:// doi. org/ 10. 1093/ eurhe artj/ ehae1 01.

20. Garweg C, et al. A leadless ventricular pacemaker providing

atrioventricular synchronous pacing in the real-world setting:

12-month results from the Micra AV post-approval registry. Heart

Rhythm. 2024. https:// doi. org/ 10. 1016/j. hrthm. 2024. 06. 008.

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.


阅读数: 157