

Ticagrelor Monotherapy Beyond One Month Versus Conventional **Therapy On Adjudicated Ischemic And Bleeding Endpoints Following Drug Eluting Sent Implantation. Primary Results of the GLOBAL LEADERS Adjudication Sub-**StudY (GLASSY)

M. Valgimigli, MD, PhD

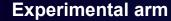
Swiss Cardiovascular Center Bern, Inselspital, Bern, Switzerland on behalf of GLASSY Investigators

Declaration of Interest

Dr. Valgimigli reports grants and personal fees from Abbott, personal fees from Chiesi, personal fees from Bayer, personal fees from Daiichi Sankyo, personal fees from Amgen, grants and personal fees from Terumo, personal fees from Alvimedica, grants from Medicure, grants and personal fees from Astrazeneca, personal fees from Biosensors, personal fees from Idorsia, outside the submitted work.

Background

- Dual antiplatelet therapy (DAPT) mitigates the risks of cardia and, to lesser extent, cerebrovascular ischemic events.
- However, prolonged DAPT carries a heightened major bleed
- P2Y₁₂ inhibitor monotherapy might limit bleeding risk and rethe ischemic benefits of prolonged DAPT and provide long-togreater ischemic protection than aspirin alone.
- In GLOBAL LEADERS ticagrelor with 1-mo aspirin did not re composite of death or Q-MI as compared to 1-year DAPT fol by aspirin*.


Background_{ii}

- By design, all clinical endpoints in the GLOBAL LEADERS s investigator reported (IR) without central adjudication.
 - "The FDA considers the adjudication process to be a critical important component of good clinical study practice"*
- The current study was designed to prospectively implement independent central adjudication process of both reported e and potential unreported event triggers to further assess the impact of this novel experimental treatment in a large stratification
 sample of patients included in the GLOBAL LEADERS trial.

GLOBAL LEADERS design

ASA 75-100 mg/d

Ticagrelor 90 mg bid

Control arm

UA+NSTEMI+STEMI Ticagrelor 90 mg bid

ASA 75-100 mg/d

ASA 75-100 mg/d

Stable CAD

Clopidogrel 75 mg/d

0 30 d 90 d 120 d

1 year

1.5 years

2 years

"All-comers"
PCI population
N = 15,991

1:1 Randomisation, open-label design, 130 centers worldwide

Any type of lesions: Left main, SVG, CTO bifurcation, ISR, etc.

Unrestricted use of DES (number, length)

Randomization was also stratified by site

GLASSY - OBJECTIVES

To assess the comparative effectiveness of the experimental treatment strategy as compared to conventional 12-month DAPT followed by aspirin on the:

- Primary efficacy EP of CEC-adjudicated all-cause death, non- fatal MI, non-fatal stroke or urgent TVR (non-inferiority and if met superiority)
- Primary safety EP of CEC-adjudicated BARC 3 or 5
 bleeding

(superiority)

GLASSY — STATISTICAL CONSIDERATIONS

Under the assumptions that the co-primary *Efficacy* and *Safety EPs* woul respectively at 11% and 5% in the control group, <u>7,186</u> patients would yie

- > 85% power to detect non-inferiority for the co-primary efficacy EP with margin at 1.22 on a relative scale (≈ 2.4% ARD), 1-sided type I error of 2.5
- 80% power to assess the superiority for the co-primary efficacy EP, assu 20% RRR with two-sided alpha of 2.5%.
- > 80% power to detect a 33% RRR in the experimental arm for the co-prin safety endpoint (BARC 3 or 5 bleeding) with two-sided alpha error at 2.5%

GLASSY — PARTICIPATING SITES AND FUNDS

The study was sponsored by the European Institute of Clinical Research (ECRI), a nonprofit organization, and received grant support from the department of cardiology at Bern university hospital, Bern, Switzerland and from the Swiss National Science Foundation (SNSF) Project number:

I**©6 Em2any**80403.

Bad Nauheim, PI: C. Hamm

Essen, PI: C. Naber

United Kingdom

Blackburn, PI: S. Gard

The Netherlands —

Rotterdam, PI: D. Diletti

Amsterdam, PI: T. Slagboom

Belgium

Hasselt, PI: E. Benit

Bonheiden, PI: L. Janssens

Chaleroi, PI: A. Aminian

Genk, PI: M. Vrolix

Switzerland

Bern, PI: S. Windecker

Poland

Chrzabow, PI: A. Zurakowski

Krakov, PI: K. Zmudka

Dabrowa Gornicza, PI: P. Buszan

PAKS Kozle, PI: J. Prokopczuk

Austria

Vienna, PI: K. Huber

Italy

Pavia, PI: M. Ferrario

Ferrara, PI: C. Tumscitz

Terni, PI: M. Dominici

Arezzo, PI: L. Bolognese

Bulgaria

Sofia, PI: I. Petrov

GLASSY — STUDY DESIGN

GLASSY 7,585

Global **Leaders Trial** 15,991

CRF based screening

Investigator reported events Event triggers based on prespecified logics CHAIR:

Source documents collection/translation

CEC process

Formal adjudication of IR and triggered EPs

E. Mc FADDEN

CO-CHAIR:

S. LEONARDI

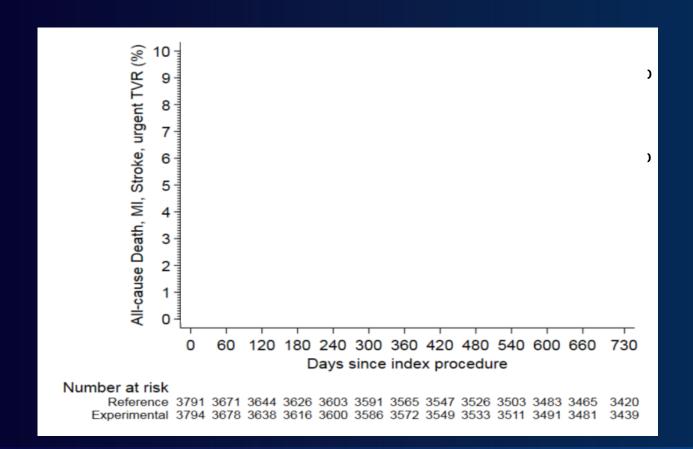
MEMBER:

R. PICCOLO

PROJECT LEADER:

A. FRANZONE

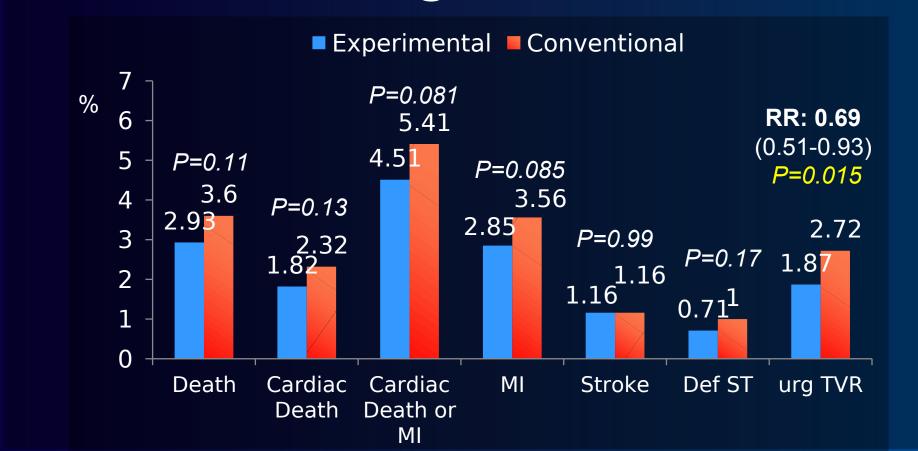
GLASSY - PARTICIPANTS VS NON PARTICIPANTS


	Glassy	Not Glassy	
Clinical characteristics	(20 sites)	(110 sites)	P-value
	N=7,585	N= 8,383	
Age	64.9±10	64.2±10	0.41
Female sex	1799 (23.7)	1915 (22.8)	0.33
Hypertension	5492 (73)	6223 (74)	0.70
Diabetes mellitus	18 22 (24)	2216 (26)	
0.47			
Renal failure (eGFR < 60 ml/min)	1005 (13)	1166 (14)	0.83
Peripheral Vascular disease	553 (7)	452 (5)	
0.03			
Current smoker	2186 (29)	1983 (24)	0.007
Previous MI	1762 (23)	1948 (23)	
0.91			
Previous PCI	2522 (33)	2699 (32)	
0.53			
Previous CABG	443 (6)	500 (6)	0.62
Stable CAD	3745 (49)	4736 (56)	
0.048			
Multivessel treatment	1098 (14) * Mixed-model	s p-values, accounting for a random e	ffect 0,65
Dravious major blooding	18 (U E)	50 (0 E)	moot of Hoopital la

Clinical outcomes according to GLASSY inclusion

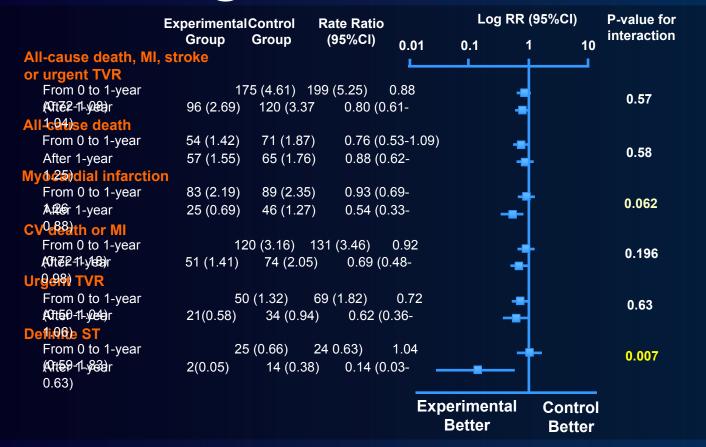
	Experimental Intervention Group	Control Group	Rate Ratio [Exp./Reference* F	Rate ratio (95% CI)	p-value	p-value for interaction
Subgroups	N=7980	N =7988		25 0.5 1.0 2.0		
All-cause mortality or New Q-wave MI o	r equivalent LBBB					0.741
GLASSY	151/3794	179/3791	0.84 (0.68-1.04)	-	0.114	
No GLASSY	154/4186	174/4197	0.88 (0.71-1.10)		0.266	
All-cause mortality				_		0.343
GLASSY	111/3794	136/3791	0.81 (0.63-1.04)		0.105	
No GLASSY	113/4186	117/4197	0.97 (0.75-1.25)		0.805	
New Q-wave MI or equivalent LBBB				_		0.395
GLASSY	43/3794	48/3791	0.89 (0.59-1.35)		0.585	
No GLASSY	41/4186	59/4197	0.70 (0.47-1.04)		0.072	
BARC3 or 5 Bleeding						0.896
GLASSY	82/3794	86/3791	0.95 (0.70-1.29)		0.760	
No GLASSY	81/4186	83/4197	0.98 (0.72-1.33)	⊢	0.907	
BARC3 bleeding						0.965
GLASSY	77/3794	81/3791	0.95 (0.70-1.30)	-	0.753	
No GLASSY	73/4186	78/4197	0.94 (0.68-1.30)	─	0.712	
BARC5 bleeding						0.388
GLASSY	12/3794	10/3791	1.20 (0.52-2.78)		0.668	
No GLASSY	10/4186	14/4197	0.72 (0.32-1.62)	•	0.424	

GLASSY — CO-PRIMARY EFFICACY EP



GLASSY

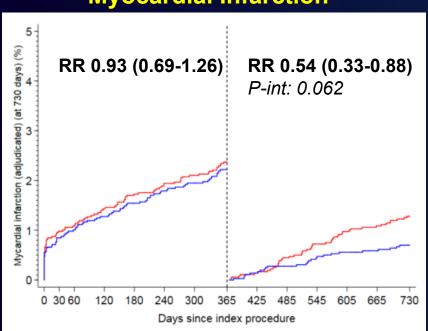
GLASSY

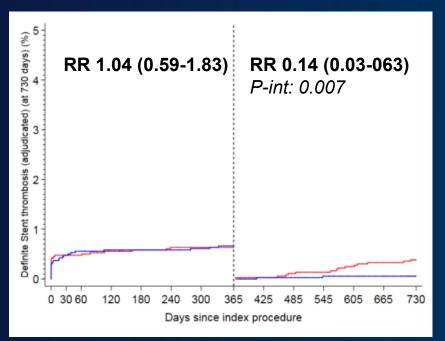

SECONDARY EFFICACY EPS @ 2-YEARS

GLASSY

LANDMARK ANALYSIS @ 1-YEAR

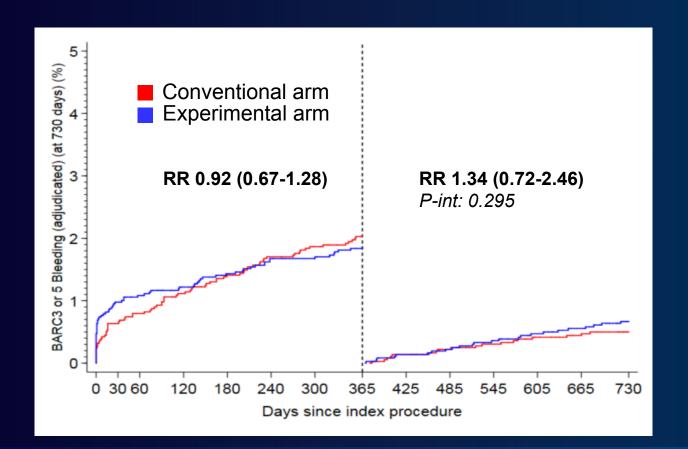
GLASSY


LANDMARK ANALYSIS @ 1-YEAR


Experimental arm

Conventional arm

Myocardial Infarction



Definite Stent thrombosis

GLASSY — CO-PRIMARY SAFETYEP

Summary

- Ticagrelor monotherapy after 1-month DAPT was non-inferior to conventional DAPT in the prevention of all-cause death, non-fatal myocardial infarction, non-fatal stroke, or urgent target-vessel revascularization at 2 years.
- Our results provide new evidence that discontinuation of as after 30 days while continuing ticagrelor alone does not expendients to a higher ischemic risk as compared to a standard for 1 year and may reduce the rates of MI and stent thrombot as compared to aspirin alone.
- Furthermore, the experimental treatment did not increase the of major bleeding.