
Listen to this manuscript’s

audio summary by

Editor-in-Chief

Dr. Valentin Fuster on

JACC.org.

J O U R N A L O F T H E AM E R I C A N C O L L E G E O F C A R D I O L O G Y V O L . 7 2 , N O . 2 5 , 2 0 1 8

ª 2 0 1 8 B Y T H E AM E R I C A N C O L L E G E O F C A R D I O L O G Y F O UN DA T I O N

P U B L I S H E D B Y E L S E V I E R
Association of Serum Cholesterol
Efflux Capacity With Mortality in
Patients With ST-Segment Elevation
Myocardial Infarction

Maryse Guerin, PHD,a,* Johanne Silvain, MD, PHD,a,b,* Julie Gall, PHD,a Maryam Darabi, PHD,a Myriam Berthet, PHD,a

Eric Frisdal, PHD,a Marie Hauguel-Moreau, MD,a,b Michel Zeitouni, MD,a,b Mathieu Kerneis, MD,a,b

Benoit Lattuca, MD,a,b Delphine Brugier,a,b Jean-Philippe Collet, MD, PHD,a,b Philippe Lesnik, PHD,a

Gilles Montalescot, MD, PHDa,b
ABSTRACT
ISS

Fro

Pa

Nu

wo

an

Inv

Re

ho

Dr

gra

rec

Sa

ho

Me

AD
BACKGROUND Serum cholesterol efflux capacity, a biomarker that integrates contributors and modulators of the

initial step of the reverse cholesterol transport, has been associated with atherosclerosis independently of high-density

lipoprotein (HDL) cholesterol level.

OBJECTIVES The authors evaluated the prognostic impact of serum cholesterol efflux capacity on mortality in a large

cohort of patients hospitalized for an acute myocardial infarction (MI).

METHODS Serum cholesterol efflux capacity, cholesteryl ester transfer protein (CETP) activity, total cholesterol, low-

density lipoprotein cholesterol, HDL cholesterol, and triglyceride levels were measured in 1,609 consecutive patients

admitted with an acute MI. The primary endpoint was all-cause mortality evaluated at 6 years with a median follow-up of

1.9 years (interquartile range: 1.5 to 4.2 years). An analysis by quartile of serum cholesterol efflux capacity was also

performed.

RESULTS In a fully adjusted model that included age, sex, traditional cardiovascular risk factors including lipid levels,

and prognostic factors of MI, serum cholesterol efflux capacity was a strong predictor of survival (adjusted hazard ratio

for mortality per 1-SD increase in serum cholesterol efflux capacity, 0.79; 95% confidence interval: 0.66 to 0.95;

p ¼ 0.0132). Patients displaying an elevated serum cholesterol efflux capacity had a marked lower rate of mortality at

6 years (adjusted hazard ratio: 0.54 [0.32 to 0.89]; p ¼ 0.0165) as compared with patients with reduced serum

cholesterol efflux capacity.

CONCLUSIONS Serum cholesterol efflux capacity, an integrative marker of reverse cholesterol transport pathway and

efficacy, was inversely associated with all-cause mortality in MI patients independently of HDL cholesterol level and

other risk factors. (J Am Coll Cardiol 2018;72:3259–69) © 2018 by the American College of Cardiology Foundation.
N 0735-1097/$36.00 https://doi.org/10.1016/j.jacc.2018.09.080
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ABBR EV I A T I ON S

AND ACRONYMS

ABCA1 = ATP-binding cassette

A1

apoB = apolipoprotein B

CETP = cholesteryl ester

transfer protein

CI = confidence interval

HDL = high-density lipoprotein

HR = hazard ratio

LDL = low-density lipoprotein

MI = myocardial infarction

PCI = percutaneous coronary

intervention

SR-BI = scavenger receptor

class B member 1

STEMI = ST-segment elevation

myocardial infarction
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L ow circulating levels of high-density
lipoprotein (HDL) cholesterol repre-
sent a strong, independent risk factor

for premature atherosclerosis and coronary
heart disease (1). Although low-density lipo-
protein (LDL) promotes atherosclerosis by
delivering cholesterol to artery-wall macro-
phages, HDL’s cardioprotective effects are
mediated in part by the so called reverse
cholesterol transport that represents its abil-
ity to remove cholesterol from macrophages
in a centripetal movement from peripheral
tissues, including the vessel wall, toward
the liver for biliary secretion (2).
SEE PAGE 3270
The failure of HDL-raising drugs, such as
niacin and more recently cholesteryl ester
transfer protein (CETP) inhibitors (3), has
shown that steady-state HDL cholesterol levels do not
represent the most appropriate cardiovascular risk
factor index (4). Efflux capacity, the capacity of HDL
particles to mediate cholesterol efflux from macro-
phages, has been established as having a strong in-
verse association with both carotid intima–media
thickness (5) and also with the incidence of cardio-
vascular events (6,7), independently of HDL choles-
terol level. Moreover, recent studies suggested that
the impaired efflux capacity of HDL particles may also
be an independent risk factor for cardiovascular
mortality in patients with chronic coronary artery
disease (8,9). Cholesterol efflux capacity is also a new
therapeutic target, and ongoing studies are evalu-
ating innovative therapies trying to improve choles-
terol efflux, thus reducing plaque burden and
improving plaque stabilization rather than raising
HDL alone (10).

The prevailing system measuring HDL efflux ca-
pacity that uses mouse macrophages and apolipo-
protein B (apoB)-depleted serum is associated with its
own limits, mostly inherent in the use of nonhuman
macrophages (11–14) and nonconsideration of roles of
both apoB lipoproteins (15) and CETP (16) in mainte-
nance of cholesterol flow through the intravascular
reverse cholesterol transport process (Figure 1). In this
context, we developed a more comprehensive assay
measuring the overall capacity of a given serum to
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mediate cholesterol efflux from macrophages and
have demonstrated its relevance as a clinical tool for
identification of patients at high risk of premature
atherosclerosis (17). In the present study, we evalu-
ated for the first time to our knowledge whether
serum cholesterol efflux capacity has an independent
prognostic value for all-cause mortality in patients
hospitalized for an acute myocardial infarction (MI)
and treated with primary percutaneous coronary
intervention (PCI).

METHODS

STUDY POPULATION AND DATA COLLECTION. Be-
tween January 2003 and April 2014, 1,609 consecutive
patients treated for an acute MI at the Pitié-
Salpêtrière University Hospital, Paris, France, were
enrolled in the ongoing ePARIS registry, a prospective
registry with extensive clinical and biological data
collection. Patients were included if they had an
acute ST-segment elevation myocardial infarction
(STEMI) treated by primary PCI, and biological
sampling was obtained on arrival in the catheteriza-
tion laboratory. Patients discharged without a
final diagnosis of STEMI were excluded as well as
the patients who did not consent to participate.
Following revascularization, patients who survived
and were discharged from hospital (95.2%) received
a medical treatment including anti-ischemic, lipid-
lowering, and antithrombotic drugs according to
the current guidelines. All patients had follow-up
during hospital stay, with completed baseline char-
acteristics and pharmacological management. Clin-
ical outcomes were obtained by telephone call by
clinic research associates, during medical consulta-
tion or from pre-hospitalization medical reports.
In the absence of direct contact with the patient,
survival status was checked in the birth city hall
registry.

STUDY ENDPOINT AND OBJECTIVES. The primary
endpoint of the study was all-cause mortality evalu-
ated for the entire study population at 6 years with a
minimum of 1 year for the last patients included.
Follow-up was continued until the last included pa-
tient reached 1 year of follow-up. The primary
objective was to evaluate the independent impact of
serum cholesterol efflux capacity from human
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FIGURE 1 Simplified Schematic Representation of Serum Cholesterol Efflux Capacity

Serum cholesterol efflux capacity was measured in the presence of whole serum using

cholesterol-loaded human macrophage (A), and of standard system measuring HDL

efflux capacity performed in the presence of apoB-depleted serum using cholesterol-

loaded mouse macrophage in which ABCA1 is up-regulated by cAMP (B). The size of the

arrow indicates relative contribution of major cholesterol efflux pathways in both

cellular models. Small HDL represents lipid-poor HDL; large HDL represents lipid-rich

HDL. ABCA1 ¼ ATP-binding cassette A1; ABCG1 ¼ ATP-binding cassette G1; ApoB ¼
apolipoprotein B; cAMP ¼ cyclic adenosine monophosphate; CE ¼ cholesteryl esters;

CETP ¼ cholesterol ester transfer protein; HDL ¼ high-density lipoprotein; LDL ¼ low-

density lipoprotein; SR-BI ¼ scavenger receptor class B member 1; TG ¼ triglycerides.
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macrophage cell line (17) on all-cause mortality.
Secondary objectives included the evaluation of the
impact of CETP activity on all-cause mortality and
the prognostic value of various cholesterol efflux
assays, including measurement of HDL cholesterol
efflux (apoB-depleted serum) from human macro-
phage cell line, and the use of established cellular
models each representative of 1 specific cholesterol
efflux pathway known to significantly contribute to
cholesterol efflux from human macrophage, scav-
enger receptor class B member 1 (SR-BI) or ATP-
binding cassette A1 (ABCA1) (18) (Figure 1).

BLOOD SAMPLES AND BIOCHEMICAL MEASUREMENTS.

Blood collected from all patients at admission to the
catheterization laboratory by means of venipuncture
was placed into gel-containing vacutainer tubes,
immediately (within <1 h) centrifuged, then serum
was stored at �80�C until used. Lipids were analyzed
on an autoanalyser Konelab 20 (Thermo Electron
Corporation/Thermo Fisher Scientific, Waltham,
Massachusetts) and by using commercial kits from
Roche Diagnostics (Risch-Rotkreuz, Switzerland) for
total cholesterol and from Thermo Fisher Scientific
for triglycerides and direct HDL cholesterol. LDL
cholesterol was calculated using Friedewald formula
when triglyceride levels were below 340 mg/dl or by
using commercial kit from Thermo Fisher Scientific
for direct LDL cholesterol when triglyceride levels
were >340 mg/dl.

CHOLESTEROL EFFLUX MEASUREMENTS. Serum
cholesterol efflux capacity was performed using
cholesterol-loaded human THP-1 macrophages cell
line as previously described (17,19,20). 3H-cholesterol–
labeled macrophages were incubated 4 h at 37�C in
the presence of 40-fold diluted serum. Serum
cholesterol efflux capacity was calculated as the
amount of the label recovered in the medium
divided by the total label in each well (radioactivity
in the medium þ radioactivity in the cells) obtained
after lipid extraction from cells in a mixture of 3:2
hexane-isopropanol (3:2 v/v). The background
cholesterol efflux obtained in the absence of any
acceptor was subtracted from the efflux obtained
with samples. A standard serum was tested in all
experiments and was used calculate relative
cholesterol efflux capacity of each sample. All efflux
determinations were performed in triplicate for
each sample with intra-assay and interassay co-
efficients of variation of 2% and 2.3%, respectively.
To compare our serum cholesterol efflux assay to
previous published data (5,6), we equally performed
additional cholesterol efflux measurements using
either apoB-depleted serum (HDL efflux capacity) as
cellular cholesterol acceptor (20) or various specific
cellular models representative of 1 specific efflux
pathway to evaluate global efflux capacity via either
ABCA1 or SR-BI (17–19) (see the Online Appendix for
details).

STUDY OVERSIGHT. The first 2 authors (M.G. and J.S.)
designed the study, gathered and analyzed the data,
and drafted the manuscript. The other authors
contributed to data gathering, biological measure-
ments, and critical revision of the manuscript. All the
authors vouch for the data and analyses reported. The
first 2 authors made the decision to submit the
manuscript for publication. The study conforms to the
principles outlined in the declaration of Helsinki. The
ePARIS registry was declared to the French ministry of
Health and Data Protection Authority (CNIL
1542887v0). Written informed consent was obtained
from each patient participating in the registry.
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FIGURE 2 Flow Chart of the Study

January 2003 – April 2014
n = 2,944 patients admitted for a
suspicion of an acute STEMI
treated by primary PCI

n = 2,477 patients with confirmed
STEMI treated by primary PCI

n = 868 excluded because the blood sampling for
the biobank was not performed (off hours mostly)

n = 467 excluded because of the following reasons
- 207 = STEMI not confirmed
   or other diagnosis (Takotsubo syndrome,
   myocarditis...)
- 260 = no reperfusion therapy

Follow-up for all-cause mortality
(minimum 1 year of follow-up up to 6

years)

n = 1,609 patients with complete lipid
phenotyping and serum cholesterol
efflux capacity measurement
entered the study

Between January 2003 and April 2014, 2,944 patients were screened and, finally, 1,609

patients with an acute ST-segment elevation myocardial infarction (STEMI) treated by

primary percutaneous coronary intervention (PCI) were included in our analysis.
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SAMPLE SIZE ESTIMATION. In our previous study
(18), we observed a 20% standard deviation in
serum cholesterol efflux in a cohort of primary
prevention patients. On the basis of an alpha risk of
0.05 and a power of 80%, a minimum of 125 pa-
tients per group were then required to observe a
significant difference of #5% in serum cholesterol
efflux capacity between survivors and nonsurvivors.
Considering an all-cause mortality rate of 10% after
2 years of follow-up in our population based on
previous work on our registry (21), we estimated
that a minimum of 1,250 subjects was needed in the
final analysis study.

STATISTICAL ANALYSES. Normally distributed contin-
uous variables are presented as mean � SD, whereas
continuous variables with skewed distribution (tri-
glycerides) are given as median and interquartile
range and were logarithmically transformed before
analysis. Serum cholesterol efflux capacity was
modelled either as a continuous variable or as
quartiles. The qualitative variables presented as
proportions were compared using the chi-square
test. Comparisons between 2 groups of subjects
were performed using an unpaired Student’s t-test.
Comparisons across quartiles of serum cholesterol
efflux capacity were made with the use of the
Jonckheere-Terpstra trend test. The survival curves
for serum cholesterol efflux capacity were analyzed
using the Kaplan-Meier method, and statistical
assessment was performed using the log-rank test.
The effects of different variables on all-cause mor-
tality at 6 years were assessed by Cox regression
analysis. Multivariable models included age and
sex, cardiovascular risk factors (diabetes, hyper-
tension, current smoking, obesity as defined by a
body mass index >30 kg/m2, LDL cholesterol levels,
HDL cholesterol levels, log-transformed triglyceride
levels, and status with regard to use of statins),
and prognostic factors of MI (out-of-hospital cardiac
arrest, Killip class $2, left ventricular ejection
fraction <45%, symptom-to-balloon time >360 min,
creatinine levels, previous cardiovascular events
and status with regard to use of angiotensin-
converting enzyme inhibitors/angiotensin II recep-
tor blocker and beta blockers). Statistical analyses
were performed using the R statistical software
computer program version 3.3.1 (R Foundation for
Statistical Computing, Vienna, Austria). The results
were considered to be statistically significant at
p < 0.05.

RESULTS

STUDY POPULATION AND FOLLOW-UP. The flow
chart of the study is presented in Figure 2. A total of
1,609 patients treated for an acute MI who under-
went a complete lipid phenotyping were included in
the analysis. The baseline characteristics and the
lipid phenotyping of the population are presented in
Table 1. The follow-up of the cohort was complete
with a minimum of 1 year for the last patient
enrolled and was stopped after 6 years with a median
follow-up of 1.9 years (interquartile range: 1.5 to 4.2
years), during which 239 patients died (14.8%). Mean
serum cholesterol efflux capacity was significantly
lower in patients who died during follow-up as
compared with those who survived (0.762 � 0.140
and 0.818 � 0.138; p < 0.0001), whereas HDL
cholesterol levels and CETP activity were not
(Table 1). When the population was divided into
quartiles of serum cholesterol efflux capacity from
the human macrophage cell line, we found a step-
wise increase in lipid levels (total cholesterol, LDL
cholesterol, HDL cholesterol, and triglycerides) and
CETP activity according to quartiles of serum



TABLE 1 Baseline Characteristics of the Study Population

All Patients
(N ¼ 1,609)

Survivors at 6 Years
(n ¼ 1,370)

Death at 6 Years
(n ¼ 239) p Value*

Age and sex

Age, yrs 63.4 � 14.1 61.8 � 13.6 72.9 � 13.3 <0.0001

Age >75 yrs 22.5 18.2 46.9 <0.0001

Men/women 1,218/391 1,053/317 165/74 0.0093

Traditional cardiovascular risk factor

BMI, kg/m2 26.0 � 4.4 26.1 � 4.4 25.3 � 4.1 0.0137

Obesity (BMI >30 kg/m2) 17.1 17.4 15.0 0.40

Dyslipidemia 42.4 43.1 38.5 0.19

Diabetes 18.5 18.7 17.2 0.57

Hypertension 47.6 46.2 55.6 0.0070

Smoke 40.3 43.2 23.8 <0.0001

Family history of coronary artery disease 20.5 22.4 9.6 <0.0001

Lipid phenotyping

Triglycerides, g/l 0.82 (0.59–1.21) 0.82 (0.58–1.22) 0.80 (0.60–1.18) 0.36

Total cholesterol, g/l 1.68 � 0.45 1.72 � 0.43 1.50 � 0.50 <0.0001

LDL cholesterol, g/l 1.13 � 0.41 1.16 � 0.39 0.97 � 0.46 <0.0001

HDL cholesterol, g/l 0.35 � 0.12 0.35 � 0.12 0.34 � 0.13 0.31

Cholesterol ester transfer protein activity 31.8 � 10.9 32.0 � 10.9 30.7 � 10.6 0.08

Serum cholesterol efflux capacity 0.809 � 0.139 0.818 � 0.138 0.762 � 0.140 <0.0001

Cardiac risk factor on arrival

Out-of-hospital cardiac arrest 7.7 4.3 26.9 <0.0001

Previous cardiovascular events 19.4 18.2 25.9 0.0055

Creatinine clearance, ml/min 86.4 � 42.4 91.1 � 41.6 56.8 � 34.8 <0.0001

Creatinine clearance <60 ml/min 27.7 22.5 60.7 <0.0001

Heart rate, beats/min 80.1 � 17.5 79.5 � 16.6 84.0 � 21.5 0.0006

Systolic blood pressure, mm Hg 129.8 � 26.4 130.6 � 25.6 124.5 � 30.5 0.0017

Left ventricular ejection fraction, % 49.6 � 11.7 50.9 � 10.6 41.0 � 14.7 <0.0001

Left ventricular ejection fraction <45% 24.9 20.5 51.6 <0.0001

Killip class $2 15.3 11.6 37.9 <0.0001

STB time >360 min 38.3 38.8 35.3 0.32

Discharge therapy

Statins 87.4 91.5 63.4 <0.0001

Beta-blockers 79.1 84.4 48.7 <0.0001

ACE inhibitor/ARB 81.2 85.5 56.6 <0.0001

Values are mean � SD, %, n, or median (interquartile range). *p values indicate significant difference between patients who died and who survived at 6 years.

ACE ¼ angiotensin-converting enzyme; ARB ¼ angiotensin receptor II blocker; BMI ¼ body mass index; HDL ¼ high-density lipoprotein; LDL ¼ low-density lipoprotein;
STB ¼ symptom-to-balloon.
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cholesterol efflux capacity from the human macro-
phage cell line (Table 2). By contrast, no relationship
was observed when considering cardiovascular risk
factors with the exception of systolic blood pressure
and creatinine clearance.
ASSOCIATION OF CHOLESTEROL SERUM EFFLUX

CAPACITY WITH ALL-CAUSE MORTALITY. We
observed a stepwise inverse relationship between
increasing quartiles of serum cholesterol efflux ca-
pacity and all-cause mortality at 6 years (hazard ra-
tio [HR] for the highest versus lowest quartile of
serum cholesterol efflux capacity: 0.40; 95% confi-
dence interval [CI]: 0.27 to 0.58) (Central Illustration)
that was sustained after adjustment for
cardiovascular risk factors and established prog-
nostic factors of MI (adjusted HR: 0.54; 95% CI: 0.32
to 0.89). Importantly, the results remained signifi-
cant after adjustment for traditional risks factors
without further correction for prognostic factors
(Online Table 1). The results of the multivariate
analysis with serum cholesterol efflux modelled as a
continuous variable is presented in Table 3 and
shows that elevated serum cholesterol efflux capac-
ity was an independent predictor of survival after
myocardial infarction. Additional analyses revealed
that more potent serum efflux capacity was associ-
ated with in-hospital survival (adjusted HR: 0.63;
95% CI: 0.40 to 0.97; p ¼ 0.038). Finally, in a

https://doi.org/10.1016/j.jacc.2018.09.080


TABLE 2 Baseline Characteristics of the Study Population According to Quartiles of Serum Cholesterol Efflux Capacity

Quartile 1
(n ¼ 403)

Quartile 2
(n ¼ 402)

Quartile 3
(n ¼ 403)

Quartile 4
(n ¼ 401)

p Value
for Trend*

Serum cholesterol efflux capacity 0.395–0.723 0.724–0.804 0.805–0.890 0.891–1.841

Age and sex

Age, yrs 64.8 � 13.9 63.3 � 14.1 62.6 � 14.2 63.0 � 14.2 0.0151

Men/women 312/91 310/92 303/100 293/108 0.12

Traditional cardiovascular risk factor

BMI, kg/m2 25.7 � 4.2 26.3 � 4.2 26.1 � 4.6 25.8 � 4.4 0.63

Obesity, BMI>30 kg/m2 12.9 21.0 17.7 16.8 0.27

Dyslipidemia 39.7 44.0 41.9 43.9 0.21

Diabetes 14.6 22.6 20.3 16.2 0.42

Hypertension 51.1 50.0 43.4 45.9 0.0417

Smoker 38.5 36.6 43.7 42.6 0.06

Family history of coronary artery disease 18.6 19.7 23.1 20.7 0.22

Lipid phenotyping

Triglycerides, g/l 0.75 (0.55–1.04) 0.81 (0.58–1.16) 0.84 (0.59–1.29) 0.91 (0.65–1.37) <0.0001

Total cholesterol, g/l 1.43 � 0.46 1.66 � 0.38 1.78 � 0.40 1.87 � 0.43 <0.0001

LDL cholesterol, g/l 0.94 � 0.41 1.12 � 0.35 1.20 � 0.37 1.26 � 0.42 <0.0001

HDL cholesterol, g/l 0.32 � 0.11 0.34 � 0.11 0.36 � 0.12 0.37 � 0.14 <0.0001

Cholesterol ester transfer protein activity 29.5 � 10.6 31.4 � 10.4 32.9 � 10.6 33.3 � 11.4 <0.0001

Cardiac risk factor on arrival

Out-of-hospital cardiac arrest 10.8 8.5 6.7 4.8 0.06

Previous cardiovascular events 23.6 18.9 16.1 19.0 0.10

Creatinine clearance, ml/min 79.3 � 41.0 89.1 � 43.3 88.0 � 41.8 89.3 � 43.0 0.0016

Creatinine clearance <60 ml/min 32.8 25.8 26.6 25.6 0.07

Heart rate, beats/min 79.8 � 17.8 79.6 � 17.9 80.3 � 17.3 80.9 � 16.8 0.10

Systolic blood pressure, mm Hg 127.9 � 26.6 127.7 � 26.0 130.5 � 26.5 133.0 � 26.5 0.0019

Left ventricular ejection fraction, % 47.6 � 12.5 50.2 � 11.6 50.6 � 11.8 50.0 � 10.9 0.0120

Left ventricular ejection fraction <45% 30.0 21.9 21.6 26.3 0.20

Killip class $2 19.0 16.1 12.0 14.3 0.08

STB time >360 min 38.6 38.6 38.1 37.8 0.41

Discharge therapy

Statins 81.4 88.3 90.8 89.0 0.0243

Beta-blockers 71.7 81.3 81.9 81.5 0.0100

ACE inhibitor/ARB 78.4 78.8 83.4 84.0 0.0493

Values are minimal and maximal values for each quartile, mean � SD, n, %, or median (interquartile range). *p values indicate significant difference across quartiles of serum
cholesterol efflux capacity.

Abbreviations as in Table 1.
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landmark analysis, we demonstrate that serum
cholesterol efflux is an independent marker of short-
term prognosis at 30 days after the MI (adjusted HR:
0.32; 95% CI: 0.13 to 0.78; p ¼ 0.012) (Online
Figure 1), but also a marker of the long-term prog-
nosis in MI survivors (excluding the patients who
died within 48 h of hospitalization) were the asso-
ciation of a more potent serum efflux capacity with
survival remained significant (adjusted HR: 0.51;
95% CI: 0.29 to 0.89; p ¼ 0.018) (Online Figure 2).

More importantly, among all the lipid parameters
including HDL cholesterol, LDL cholesterol, tri-
glycerides, and CETP activity, serum cholesterol
efflux capacity was the only factor independently
associated with survival when considering both
unadjusted and adjusted models (Figure 3).
PROGNOSTIC VALUE OF OTHER CHOLESTEROL

EFFLUX CAPACITY ASSAYS. Serum cholesterol
efflux capacity from human macrophage cell line was
the only biomarker to be independently associated
with survival in adjusted analyses. Despite being
significantly increased in patients who died versus
those who survived, neither HDL efflux capacity
(apoB-depleted serum used as cholesterol acceptor)
(Online Figure 3) nor ABCA1-dependent or SR-BI-
dependent serum efflux capacities were indepen-
dent correlates of survival (Figure 4).

DISCUSSION

This study demonstrates for the first time to our
knowledge that serum cholesterol efflux capacity,

https://doi.org/10.1016/j.jacc.2018.09.080
https://doi.org/10.1016/j.jacc.2018.09.080
https://doi.org/10.1016/j.jacc.2018.09.080
https://doi.org/10.1016/j.jacc.2018.09.080


CENTRAL ILLUSTRATION Cholesterol Efflux and Mortality in Myocardial Infarction:
Kaplan-Meier Cumulative Survival Curve
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Mortality at 6 years according to quartiles of serum cholesterol efflux capacity. Patients with impaired serum cholesterol efflux capacity

(quartile 1 [Q1]) had a worse prognosis than patients with effective level of cholesterol efflux capacity (Q3, Q4).
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a biomarker that integrates circulating contributors
and modulators of the initial step of reverse choles-
terol transport, is inversely associated with all-cause
mortality in a population-based cohort of patients
admitted for an acute MI. Patients with the highest
serum cholesterol efflux capacity had a marked
decrease in all-cause mortality as compared to pa-
tients with the lowest serum cholesterol efflux ca-
pacity. This association persisted with several models
of multivariable adjustment, including age, sex,
traditional cardiovascular risk factors, but also circu-
lating LDL, HDL cholesterol, triglycerides levels, and
prognostic factors of MI.
Reduced HDL efflux capacity is independently
associated with the progression of atherosclerosis
measured by the carotid intima–media thickness and
the likelihood of angiographic coronary artery dis-
ease (5), and was also found to be independent
correlates of cardiovascular events in a large
population-based cohort, the Dallas Heart Study (6).
More recently, we developed a more comprehensive
and humanized assay measuring the serum choles-
terol efflux capacity and demonstrated its association
with premature atherosclerosis (17). The present
work goes further and adds to the current knowledge
that reduced serum cholesterol efflux capacity



TABLE 3 Significant Predictors of All-Cause Mortality at 6 Years in Univariate and

Multivariate Cox Regression Analyses

Univariate Analysis Multivariate Analysis

HR (95% CI) p Value HR (95% CI) p Value

Male 0.69 (0.52–0.91) 0.0078 1.52 (1.04–2.24) 0.0322

Age 2.17 (1.89–2.49) <0.0001 2.60 (2.06–3.27) <0.0001

Creatinine 1.19 (1.13–1.26) <0.0001 1.17 (1.06–1.31) 0.0033

Left ventricular ejection
fraction <45%

3.84 (2.95–4.99) <0.0001 1.94 (1.38–2.71) 0.0001

Killip class $2 4.18 (3.18–5.49) <0.0001 1.64 (1.15–2.34) 0.0067

STB time >360 min 0.91 (0.69–1.19) 0.49 0.63 (0.44–0.90) 0.0116

Out-of-hospital cardiac arrest 6.55 (4.92–8.74) <0.0001 6.83 (4.34–10.76) <0.0001

Previous cardiovascular events,
previous MACE

1.59 (1.19–2.12) 0.0018 1.25 (0.86–1.80) 0.24

Triglycerides 0.95 (0.84–1.08) 0.46 0.97 (0.79–1.19) 0.77

LDL cholesterol 0.60 (0.52–0.69) <0.0001 0.91 (0.75–1.10) 0.35

HDL cholesterol 0.91 (0.80–1.04) 0.17 0.98 (0.79–1.20) 0.82

Diabetes 0.90 (0.64–1.26) 0.54 0.71 (0.41–1.25) 0.24

Hypertension 1.43 (1.11–1.84) 0.0062 1.09 (0.77–1.53) 0.63

Obesity 0.84 (0.57–1.23) 0.38 0.73 (0.40–1.33) 0.31

Smoking 0.44 (0.33–0.60) <0.0001 1.34 (0.88–2.06) 0.17

Statins 0.18 (0.14–0.23) <0.0001 0.44 (0.27–0.71) 0.0007

Beta-blockers 0.20 (0.15–0.26) <0.0001 0.52 (0.34–0.78) 0.0015

ACE inhibitor/ARB 0.24 (0.19–0.31) <0.0001 0.72 (0.46–1.15) 0.17

Cholesterol ester transfer
protein activity

0.89 (0.78–1.01) 0.07 1.04 (0.86–1.26) 0.66

Serum cholesterol efflux
capacity

0.66 (0.58–0.76) <0.0001 0.79 (0.65–0.95) 0.0141

CI ¼ confidence interval; HR ¼ hazard ratio; MACE ¼ major adverse cardiac event(s); other abbreviations as in
Table 1.
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represents a strong predictor of mortality after a MI
independently of HDL and LDL cholesterol levels,
and despite optimal secondary prevention treat-
ments including statins.

It is established that HDL particles in MI patients
display an altered capacity to mediate cholesterol
efflux from macrophages and have impaired anti-
inflammatory functionality (22). These findings sup-
port the contention that dysfunctional HDL particles
present within the intravascular compartment can
contribute to the reduced serum cholesterol efflux
capacity observed in the present study.

Numerous human studies support the concept that
a reduction of CETP activity, a protein with a key role
in reverse cholesterol transport and HDL remodeling
(17), could prevent atherosclerosis (23). However, the
inability of CETP inhibitors to decrease cardiovascu-
lar outcomes (24–26) may suggest that a residual
CETP activity should be maintained in order to pre-
serve its optimal physiological action (27). In our
work, we found that reduced CETP activity was not
independently related to outcomes despite being
associated with a lower serum efflux capacity. Like-
wise, a large prospective observational trial of
patients at high cardiovascular risk demonstrated
that a low CETP level constitutes an independent risk
factor for all-cause and cardiovascular mortality (26).
Such results reinforce the importance of measuring
serum cholesterol efflux capacity that integrates
intravascular modulators of cholesterol efflux process
and appears to be a more promising therapeutic
target. Innovative therapies such as the infusion of
reconstituted human apolipoprotein A-1, which
showed promising results in term of improvement of
the cholesterol efflux in post MI patients (10), is being
tested on a large scale in the AEGIS-II phase 3 trial
(Study to Investigate CSL112 in Subjects With Acute
Coronary Syndrome; NCT03473223). The present
study validates the hypothesis tested in the AEGIS-II
trial, because impaired cholesterol efflux capacity
seems to be associated with worse outcome. Whether
the reversal of impaired cholesterol efflux will trans-
late into an improvement of the prognosis of post MI
patients remains to be demonstrated.

There is no gold standard method for ex vivo
evaluation of cholesterol efflux capacity, and
considerable differences do exist between research
groups (11,28). The ideal cellular model would be
primary human macrophages although their suit-
ability for a large cohort is questionable due to
considerable interindividual variability. In the pre-
sent study, we used the human THP-1 macrophage, a
model that is more integrative and relevant to human
physiopathology measuring serum cholesterol efflux
capacity including the contribution of ABCA1 and SR-
BI (15,29), apoB-containing lipoproteins (16,30), and
CETP activity (17) that are all important key players in
the reverse cholesterol transport pathway. Never-
theless, we believe that the human THP-1 macro-
phage cell line cannot be considered as a superior
model for efflux measurement because any cellular
model used always represent artificial systems that
are not directly reflecting the in vivo situation, but
only the capacity of various components of serum to
remove cholesterol from cells.

STUDY LIMITATIONS. First, our cohort is relatively
modest as compared with previous studies evaluating
the capacity of apoB-depleted serum to mediate
cholesterol efflux and incidence of cardiovascular
events (6) or mortality (8). However, we believe that
this is compensated by the fact that our population is
on average 20 years older than the population-based
cohort previously studied (6,8), that the long follow-
up and high event rate of our homogeneous post-MI
population is quite high, providing sufficient power
to conduct our analysis with multiple adjustments.
Second, data on secondary cardiovascular events

https://www.clinicaltrials.gov/ct2/show/NCT03473223


FIGURE 3 HRs for All-Cause Mortality at 6 Years
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were not available, and we cannot demonstrate an
effect of serum cholesterol efflux capacity on a
reduction of recurrent cardiovascular events; how-
ever, we believe that all-cause mortality is a stronger
FIGURE 4 Impact of Serum Cholesterol Efflux Capacity Measured by
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE:

Serum cholesterol efflux capacity, a biomarker that

integrates modulators of reverse cholesterol trans-

port, is associated with atherosclerosis independent

of HDL cholesterol level, and impaired cholesterol

efflux capacity is associated with increased mortality

following acute coronary events.

TRANSLATIONAL OUTLOOK: Prospective trials

are needed to assess the efficacy of restoring

cholesterol efflux capacity on improving clinical

outcomes among survivors of acute myocardial

infarction.
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efflux capacity; instead, cholesterol ester transfer
protein activity was measured as a more clinically
relevant cofounding factor.

CONCLUSIONS

The present study demonstrates that serum choles-
terol efflux capacity, which reflects flow of choles-
terol through multiple intravascular components of
the reverse cholesterol transport process, is inde-
pendently associated with long-term survival in MI
patients. These findings indicate that serum choles-
terol efflux capacity is a useful biomarker to identify
patients at higher risk of mortality after an acute
coronary event. It also validates the hypothesis of an
ongoing trial aiming to restore cholesterol efflux ca-
pacity with an innovative therapy in post-MI pa-
tients. Indeed, after the failure of niacin and CETP
inhibitors, new treatments aiming to restore or
improve serum cholesterol efflux capacity, and/or the
overall efficacy of the reverse cholesterol transport
pathway are needed to further improve the prognosis
of patients who have had a major cardiovascular
event.
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