Lipoprotein(a), PCSK9 Inhibition and Cardiovascular Risk: Insights from the FOURIER Trial

Running Title: O'Donoghue et al.; Lp(a), PCSK9 Inhibition and CV Risk

Michelle L. O'Donoghue, MD, MPH; Sergio Fazio, MD, PhD; Robert P. Giugliano, MD, SM; Erik S.G. Stroes, MD; Estella Kanevsky, MS; Ioanna Gouni-Berthold, MD; KyungAh Im, PhD; Armando Lira Pineda, MD; Scott M. Wasserman, MD; Richard Češka, MD, PhD; Marat V. Ezhov, MD, PhD; J. Wouter Jukema, MD, PhD; Henrik K. Jensen, MD, PhD; S. Lale Tokgözoğlu, MD; François Mach, MD; Kurt Huber, MD; Peter S. Sever, PhD, FRCP; Anthony C. Keech, MD; Terje R. Pedersen, MD; Marc S. Sabatine, MD, MPH

1TIMI Study Group, Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA; 2Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR; 3Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands; 4Polyclinic for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Germany; 5Amgen, Thousand Oaks, CA; 6Center for Preventive Cardiology, 3rd Internal Medicine Clinic, University General Hospital and Charles University 1st Medical Faculty, Prague, Czech Republic; 7National Cardiology Research Center, Moscow, Russia; 8Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands; 9Department of Cardiology, Aarhus University Hospital and Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark; 10Cardiovascular Division, Hacettepe University, Ankara, Turkey; 11Cardiology Division, University of Geneva, Geneva, Switzerland; 123rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital and Sigmund Freud University, Medical Faculty, Vienna, Austria; 13Imperial College London, London, UK; 14Sydney Medical School, National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, Australia; 15Oslo University Hospital, Ullevål and Medical Faculty, University of Oslo, Oslo, Norway

Address for Correspondence:
Michelle L. O’Donoghue, MD, MPH
TIMI Study Group
Cardiovascular Division
Brigham and Women’s Hospital
60 Fenwood Road, 7th Floor
Boston, MA 02115
Tel: 617-278-0145
Fax: 617-734-7329
Email: modonoghue@bwh.harvard.edu
Abstract

**Background:** Lipoprotein(a) [Lp(a)] may play a causal role in atherosclerosis. Proprotein convertase subtilisin/kexin 9 (PCSK9) inhibitors have been shown to significantly reduce plasma Lp(a) concentration. However, the relationship between Lp(a) levels, PCSK9 inhibition and cardiovascular (CV) risk reduction remains undefined.

**Methods:** Lp(a) was measured in 25,096 patients in FOURIER, a randomized trial of evolocumab versus placebo in patients with established atherosclerotic CV disease (median follow-up 2.2 years). Cox models were used to assess the independent prognostic value of Lp(a) and the efficacy of evolocumab for coronary risk reduction by baseline Lp(a) concentration.

**Results:** The median [IQR] baseline Lp(a) concentration was 37[13-165] nmol/L. In the placebo arm, patients with baseline Lp(a) in the highest quartile had a higher risk of coronary heart disease (CHD) death, MI or urgent revascularization (UR) (adjusted HR Q4:Q1 1.22, 95% CI 1.01-1.48) independent of LDL-C. At 48 weeks, evolocumab significantly reduced Lp(a) by a median [IQR] of 26.9% [6.2-46.7%]. The percent change in Lp(a) and LDL-C at 48 weeks in evolocumab patients was moderately positively correlated (r=0.37, 95% CI 0.36-0.39, P<0.001). Evolocumab reduced the risk of CHD death, MI or UR by 23% (HR 0.77, 95% CI 0.67-0.88) in patients with a baseline Lp(a) >median, and by 7% (HR 0.93, 0.80-1.08; P interaction=0.07) in those ≤median. Coupled with the higher baseline risk, the absolute risk reductions and NNT_{3y} were 2.49% and 40 vs. 0.95% and 105, respectively.

**Conclusions:** Lp(a) is associated with the risk of CV events in patients with established CV disease irrespective of LDL-C. Evolocumab significantly reduced Lp(a) levels, and patients with higher baseline Lp(a) levels experienced greater absolute reductions in Lp(a) and tended to derive greater coronary benefit from PCSK9 inhibition.

**Clinical Trial Registration:** URL: https://clinicaltrials.gov Unique Identifier: NCT01764633

**Key Words:** Lipoprotein(a); PCSK9 inhibitor; clinical trials; stable atherosclerosis
Clinical Perspective

What is new?

- We examined the relationship between Lp(a) levels, PCSK9 inhibition with evolocumab and cardiovascular (CV) risk reduction in patients with established atherosclerotic CV disease
- Patients with higher concentration of Lp(a) were at increased risk of coronary events independent of LDL-cholesterol concentration
- Individuals with higher baseline Lp(a) concentration tended to have a greater relative and absolute coronary risk reduction with evolocumab and therefore a lower number needed to treat.

What are the clinical implications?

- Evolocumab reduces Lp(a) concentration and patients with higher baseline Lp(a) concentration may derive enhanced benefit from treatment with evolocumab.
Introduction

Lipoprotein [Lp(a)] consists of an LDL-like particle that also contains apolipoprotein(a) [apo(a)] linked to apolipoprotein B [apo(B)]. Lp(a) plasma concentrations are highly heritable and predominantly controlled by the apo(a) gene (LPA). Several epidemiologic studies have demonstrated an association between higher plasma Lp(a) concentrations and coronary risk; however, the strength of the association in patients with well-controlled plasma LDL cholesterol (LDL-C) concentration has been inconsistent.

Importantly, genetic studies support that Lp(a) plays a causal role in the development of coronary atherosclerosis; in particular, data from two large Mendelian randomization studies demonstrated that genetic polymorphisms in the LPA gene are associated with Lp(a) concentration and future coronary risk.

To date, few therapies are available to reduce the concentration of Lp(a), and it remains unclear whether lowering Lp(a) will translate into improved cardiovascular (CV) outcomes. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors may offer clinical utility as they have been shown in phase 2 trials to reduce Lp(a) concentration by approximately 25-30%. However, it remains unknown whether the effect of evolocumab on risk of coronary events may be modified by baseline Lp(a) concentrations. Therefore, as a prespecified analysis of the Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER) trial, we assessed the relationship between Lp(a) levels, PCSK9 inhibition with evolocumab, and CV risk reduction.
Methods

Study population and design

The FOURIER trial was a randomized, double-blind, placebo-controlled clinical trial that enrolled 27,564 patients between 40 and 85 years of age who had established atherosclerotic CV disease, determined by a prior myocardial infarction (MI), prior non-hemorrhagic stroke or symptomatic peripheral arterial disease, in addition to predictors of high CV risk. Patients were required to have a fasting LDL-C concentration ≥70 mg/dl (1.8mM) or a non-high-density lipoprotein (HDL) cholesterol concentration ≥100mg/dl (2.6mM) while on a background of optimized lipid-lowering therapy, defined as preferably a high-intensity statin and a minimum dose of 20 mg atorvastatin daily or its equivalent, with or without ezetimibe. There were no entry criteria based on Lp(a) concentration. The study protocol was approved by all relevant ethics committees and all participating subjects provided informed consent. The data, analytical methods, and study materials will not be made universally available to other researchers for purposes of reproducing the results or replicating the procedure. However, we encourage parties interested in collaboration and data sharing to contact the corresponding author directly for further discussions.

Blood sampling and analysis

As part of the protocol, samples of venous blood were collected at timepoints throughout the trial. Lp(a) was assessed at randomization, week 12, week 24 and week 48. The plasma component was frozen and shipped to a central laboratory where samples were stored at -70°C or colder. Lp(a) was measured at Medpace Reference Laboratories (Medpace Inc. Cincinnati, OH) based on the Denka Seiken reagents (Denka Seiken, Ltd., Tokyo, Japan) (Polymedco, Cortlandt Manor, New York) using an isoform-independent immunoturbidometric assay (Polymedco,
Cortlandt Manor, New York) with a Beckman AU series analyzer (Olympus, Beckman Coulter Instruments, Brea, California). A six-point calibration curve was constructed using Polymedco calibrators formulated in units of nmols/L and traceable to the reference assay at the Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, Washington, USA. Results $\geq 150$ nmol/L were manually diluted (up to x10) and re-assayed using deionized water. All Lp(a) measurements in the FOURIER study are reported in nmol/L. An isoform independent assay is agnostic to the size of the apo(a) protein that can vary markedly due to a kringle IV type 2 size polymorphism in the LPA gene resulting in variable numbers of kringle IV repeats and various apolipoprotein(a) isoforms.\textsuperscript{15} LDL-C levels were estimated using the Friedewald equation except when estimated LDL-C was $<40$ mg/dL or triglycerides $\geq 400$ mg/dL, in which case preparative ultracentrifugation was performed.\textsuperscript{16}

**Statistical analysis**

Baseline characteristics by quartile of baseline Lp(a) were compared using the Cochran-Armitage test for binary variables and Jonckheere-Terpstra test for continuous variables. To evaluate its association with clinical outcomes, baseline Lp(a) was first analyzed in the placebo arm as a log-transformed continuous variable (log base 2) and subsequently categorized into quartiles according to baseline Lp(a) concentration. Given the prior evidence suggesting a curvilinear relationship with events,\textsuperscript{17} sensitivity analyses were conducted categorizing clinical risk by decile of baseline Lp(a). Cox proportional hazard models were used to estimate the association between Lp(a) and cardiovascular outcomes, primarily focusing on major coronary events consisting of coronary heart death, MI and urgent coronary revascularization, given prior data.\textsuperscript{2,18} Multivariable models were created adjusting for age, sex, race, region, prior MI, history of stroke, peripheral arterial disease, hypertension, diabetes mellitus, current smoking, high-
intensity statin use, ezetimibe use and baseline LDL-C. A supplementary analysis was conducted with apolipoprotein B in the model rather than LDL-C. For exploratory analyses of the association of achieved Lp(a) levels at 12 weeks and outcomes, landmark analyses were performed including all patients alive at 12 weeks and the same covariates were used except that achieved LDL-C at week 12 was used instead of baseline. Baseline hsCRP was also included. Proportional hazards assumption was assessed using scaled Schoenfeld residuals and all models met the assumption. Event rates were estimated at 3 years using the Kaplan-Meier method.

Changes in Lp(a) concentration that are reported are placebo-controlled. The effects of evolocumab and placebo on Lp(a) and LDL-C concentrations were assessed from randomization to week 48 and then stratified by baseline Lp(a) concentration. The correlation between the change in Lp(a) and change in LDL-C in the evolocumab arm was assessed by Spearman’s test. The effect of evolocumab versus placebo on risk for major coronary events was assessed for patients with a baseline Lp(a) concentration either above or below the median. Patients were stratified into deciles on the basis of baseline Lp(a), and the difference in Lp(a) and LDL-C at 48 weeks between the evolocumab and placebo arms was calculated within each decile. The hazard ratio (HR) for major coronary events with evolocumab versus placebo was also calculated within each decile. Weighted least square linear regression was then performed on the log transformed HR to examine the association between the treatment effect on major coronary events and per unit decrease in Lp(a), adjusting for differences in LDL-C. All tests were two-sided with a P value <0.05 considered to be significant (SAS, version 9.4 and R version 3.5.1 with metafor package).

The FOURIER trial was sponsored by Amgen. All analyses were conducted at the TIMI Study Group using an independent copy of the study database. Dr. O’Donoghue wrote the first
Results

Lp(a) was measured at baseline in 25,096 patients enrolled in FOURIER; the median baseline value was 37 (IQR 13-165) nmol/L (Supplementary Figure 1). Baseline levels of Lp(a) and LDL-C were weakly positively correlated (r=0.14, 95% CI 0.13-0.15, P<0.001; Supplementary Figure 2). Patients with higher baseline concentrations of Lp(a) were more likely to be female and have a history of MI or peripheral arterial disease. Conversely, patients with higher baseline Lp(a) concentrations were less likely to be smokers and have a history of ischemic stroke or diabetes mellitus (Table 1).

Association of Lp(a) plasma levels and clinical outcomes

In the placebo arm, each doubling of baseline Lp(a) concentration was associated with an 8% higher risk of CHD death, MI or urgent coronary revascularization (major coronary events; unadjusted HR per doubling of Lp(a) 1.08, 95% CI 1.04-1.11, P<0.001). Patients with baseline Lp(a) concentration in the highest quartile (>165 nmol/L) had a 33% higher risk of CHD death, MI or urgent coronary revascularization (HR 1.33, 95% CI 1.10-1.60, P=0.003) compared with those in the first quartile (Table 2).

After multivariable adjustment, elevated baseline Lp(a) concentration remained significantly associated with an increased risk of major coronary events (adjusted HR per doubling of Lp(a) 1.06, 95% CI 1.02-1.09, P=0.002). Patients with Lp(a) in the highest quartile continued to have a higher risk of CHD death, MI or urgent coronary revascularization (adjusted HR 1.22, 95% CI 1.01-1.48, P=0.04; Table 2). When categorized by decile of Lp(a), the greatest
coronary risk appeared to be in patients in the top decile (≥230 nmol/L) of Lp(a) concentration (Decile 10 vs Decile 1: adjusted HR 1.33, 95% CI 1.02-1.74, P=0.04; Supplementary Figure 3). Qualitatively consistent results were observed when apolipoprotein B replaced LDL-C in the model (Supplementary Table 1).

**Effect of evolocumab on Lp(a) concentration**

From baseline to 48 weeks, evolocumab decreased the concentration of Lp(a) by a median of 26.9% (IQR 6.2-46.7%) or 11 (IQR 1-32) nmol/L (P<0.001). The absolute reduction in Lp(a) was greatest for individuals with higher baseline Lp(a) concentrations (P trend <0.001; Supplementary Figure 4A). However, the percent reduction decreased with increasing baseline Lp(a) levels (P trend=0.002; Supplementary Figure 4B).

In patients treated with evolocumab, the percent change in Lp(a) and LDL-C from baseline to 48 weeks was moderately positively correlated (r=0.37, 95% CI 0.36-0.39, P<0.001; Supplementary Figure 5A). A weaker correlation was observed when the two parameters were assessed on an absolute basis (r=0.21, 95% CI 0.19-0.22, P<0.001; Supplementary Figure 5B).

**Effect of evolocumab on major coronary events by baseline Lp(a) concentration**

Overall, evolocumab reduced the risk of CHD death, MI or urgent coronary revascularization by 16% (HR 0.84, 95% CI 0.76-0.93). Evolocumab tended to reduce the risk of major coronary events to a greater degree in patients with higher baseline Lp(a) levels, with a reduction of 23% in those with a baseline Lp(a) above the median (HR 0.77, 0.67-0.88) versus 7% for those at or below the median (HR 0.93, 0.80-1.08; P interaction=0.07; Figure 1A). Coupled with higher CV risk, the absolute risk reductions were greater (2.49% vs 0.95%) and number needed to treat were lower (40 vs 105) at 3 years for patients with an Lp(a) concentration above versus below the median. When a clinical threshold of 120 nmol/L (50 mg/dL) was applied, the absolute risk
reductions and numbers needed to treat at 3 years were 2.41% and 41 for those above the threshold versus 1.41% and 71 below the threshold (P interaction=0.10; Figure 1B). The efficacy of evolocumab versus placebo for reducing individual components of the composite outcomes is shown in Supplementary Tables 2 and 3.

When stratifying patients into deciles by baseline Lp(a) concentration, whereas the LDL-C reduction was virtually the same (59-62 mg/dl) across each decile of baseline Lp(a), the median Lp(a) reductions ranged from 0 to 60.5 mg/dL at 48 weeks. In a weighted least square linear regression analysis that examined the association between treatment effect on CHD death, MI or urgent coronary revascularization and per unit decrease in Lp(a) adjusting for differences in LDL-C, there was a significant relationship with a 15% relative risk reduction (95% CI 2-26%, P=0.0199) per 25 nmol/L reduction in Lp(a) (Figure 2). In contrast, the relationship between the percent change in Lp(a) and the HR for major coronary events was not significant (P=0.79).

Risk of CHD events by achieved Lp(a) and achieved LDL-C at week 12
An exploratory analysis examined achieved levels at 12 weeks and subsequent risk of CHD death, MI or urgent coronary revascularization in a landmark analysis through long-term follow-up. After 12 weeks, there was a significant relationship between achieved Lp(a) level and the adjusted risk of CHD death, MI or urgent coronary revascularization (Figure 3; HR 1.04, 95% CI 1.01-1.06, P=0.01 per doubling of achieved Lp(a) concentration). There was no evidence of effect modification by randomized treatment arm (P interaction=0.51), nor was there effect modification by achieved LDL-C level (P interaction=0.79).

There was a stepwise decrease in the risk of CHD death, MI or urgent coronary revascularization for patients who achieved either an Lp(a) or LDL-C value below the achieved
median with the lowest event rate observed for those who achieved lower levels of both values (Supplementary Figure 6). Compared with patients above the median achieved level for both lipid parameters, patients with at least one level below the median had a 15% lower risk of major coronary events (adjusted HR 0.85, 95% CI 0.75-0.97, P=0.01) and those with both levels below their respective medians had a 29% lower risk of major coronary events (adjusted HR 0.72, 95% CI 0.62-0.83, P<0.0001). Consistent results were observed when patients were stratified by achieved values of LDL-C 70 mg/dL and Lp(a) 120 nmol/L (Supplementary Figure 7).

**Discussion**

In patients enrolled in the FOURIER trial, higher baseline Lp(a) concentration was independently associated with an increased risk of major coronary events and evolocumab significantly reduced Lp(a) concentration by approximately 27%. Moreover, patients with higher Lp(a) concentration at baseline experienced greater absolute Lp(a) reductions and tended to derive greater clinical benefit in terms of evolocumab’s ability to reduce the risk of major coronary events. Patients who achieved lower levels of LDL-C and Lp(a) were found to be at lowest risk of subsequent major coronary events.

In FOURIER, we observed a modest but significant association between Lp(a) concentration and the risk of major coronary events. The magnitude of the observed association tended to be greatest for those patients with baseline concentrations above the 90th percentile (≥230 nmol/L, or approximately 96mg/dL). Although epidemiologic studies have been conflicting, the association appeared to be strongest with major coronary events rather than stroke. This is perhaps related to the heterogeneous etiology and different pathobiology of ischemic stroke subtypes. Of interest, it was reported previously that Lp(a) confers CV-risk
predominantly when LDL-C levels are elevated.\textsuperscript{3,19,20} However, we found that the relationship between Lp(a) and coronary risk remained similar throughout the entire LDL-C range, thereby suggesting a consistent association of Lp(a) with CV risk in patients with established CV disease independent of concomitant baseline or achieved LDL-C levels. In support, patients who achieved lower levels of both LDL-C and Lp(a) were those who were at lowest risk of subsequent events.

Although Lp(a) is believed to be a risk factor for coronary disease,\textsuperscript{6,7} the therapeutic targeting of Lp(a) has proven difficult to date. Niacin has been shown to modestly reduce Lp(a) concentration in a dose-dependent manner,\textsuperscript{21} however, its use may be associated with an increased risk of non-CV serious adverse events and there is no evidence that treatment with niacin reduces CV risk on a background of statin.\textsuperscript{10,22} The effects of statins on plasma Lp(a) concentration have been inconsistent.\textsuperscript{1,23} Cholesteryl ester transfer protein (CETP) inhibitors reduce Lp(a), but are not approved for clinical use.\textsuperscript{8} Mipomersen, an antisense oligonucleotide directed at human apo B100, has been shown to reduce both LDL-C and Lp(a) and is approved in the United States for patients with homozygous familial hypercholesterolemia, but its clinical utility beyond LDL-C lowering remains unknown.\textsuperscript{24} The microsomal triglyceride transfer protein (MTP) inhibitor, lomitapide, has also been shown to reduce both Lp(a) and LDL-C, but adverse effects include liver function abnormalities, gastrointestinal side effects and hepatic fat accumulation.\textsuperscript{8} Tocilizumab, a humanized monoclonal antibody directed against the interleukin-6 (IL-6) receptor has been shown to decrease Lp(a) concentrations without concomitant lowering of LDL-C. This effect is believed to be mediated by an IL-6 responsive element in the promotor region of the LPA gene leading to a reduction in apo(a) synthesis;\textsuperscript{8} however, its clinical efficacy for attenuating CV risk remains unknown. Lipoprotein apheresis is employed in some countries
to reduce Lp(a) concentration, although its CV benefit has only been evaluated in small-scale studies.  

Although their exact mechanism of action remains under study, recent evidence suggests that PCSK9 inhibitors may reduce Lp(a) concentration by both enhancing clearance\textsuperscript{25} and reducing its production.\textsuperscript{26,27} In a study of healthy volunteers, evolocumab monotherapy has been demonstrated to lower plasma Lp(a) concentration by decreasing production of Lp(a) particles.\textsuperscript{27} However, in the presence of a statin, evolocumab may also act to increase Lp(a) catabolism through marked upregulation of the LDL receptor leading to enhanced Lp(a) holoparticle clearance.\textsuperscript{27} In Lp(a) uptake studies in human hepatocytes and dermal fibroblasts, secretion of apo(a) appears to increase briskly in the presence of the PCSK9 protein and this effect is reversed in the presence of the PCSK9 inhibitor alirocumab.\textsuperscript{26} Discordance between LDL-C and Lp(a) reductions has been reported, which may argue against up-regulation of LDL receptor as the sole mechanism for Lp(a) lowering by PCSK9 inhibitors.\textsuperscript{28}  

In the current study of more than 25,000 patients in the FOURIER trial, patients with higher baseline Lp(a) levels also tended to experience greater reductions in major coronary events with evolocumab. This observation is supported by a recent Mendelian randomization study that suggested that genetically mediated lower Lp(a) is associated with a lower risk of major coronary events, although the relationship is not as strong as LDL-C on a mg/dL basis.\textsuperscript{29}  

Qualitatively consistent with these findings, we observed that a 34 nmol/L (95% CI 18.5-34 nmol/L) absolute reduction in Lp(a) may be required to translate into a 20% relative risk reduction in CV events, which approximates the median reduction in Lp(a) that was seen in patients in the top quartile of Lp(a) concentration. These findings suggest that the benefit of Lp(a) lowering therapies might be largely restricted to patients with elevated levels at baseline,
therapies that produce large reductions in Lp(a), or both. These observations may also help to explain why higher baseline Lp(a) concentration was useful for helping to identify individuals with greater clinical efficacy with evolocumab.

Interestingly, the percent reduction in Lp(a) with evolocumab tended to diminish with higher baseline levels of Lp(a), possibly due to reduced clearance of smaller isoforms or other as yet defined mechanisms. However, dedicated, therapies that markedly reduce Lp(a) concentration by directly targeting the apo(a) protein remain in development and may be able to directly and more robustly test the Lp(a) hypothesis as they can reduce levels by up to approximately 90%.30,31

Practically, the current study suggests that Lp(a) may be useful to help identify patients who derive greater absolute risk reduction from evolocumab and thereby a lower number needed to treat to prevent a major adverse CV event. In patients with an Lp(a) concentration greater than the median (>37 nmol/L), the number needed to treat to prevent one major coronary event was 40 as compared to 105 for patients with a baseline Lp(a) concentration less than the median. Prior analyses from the same patient population have demonstrated that hsCRP may also predict CV risk and identify patients with a larger absolute benefit from evolocumab.32 Although hsCRP is a well-established risk marker, it does not appear to be an independent risk factor,33 and evolocumab does not lower hsCRP concentration. In contrast, Lp(a) appears to be a causal factor in coronary heart disease6,7 and its concentration is lowered by evolocumab.

Although the current analysis was prespecified, all cutpoints should be viewed as exploratory. Since the current analysis was observational in nature, observed associations should not imply causality. Patients in FOURIER were not selected based on an elevated Lp(a) concentration, therefore there was no enrichment on this basis. Nonetheless, approximately
33.1% of patients had a baseline concentration greater than 120 nmol/L (or approximately 50mg/dL) which is believed to be the 80\textsuperscript{th} percentile in a general patient population.\textsuperscript{1} Although there remains disagreement about the optimal method to assess Lp(a) concentration, the current study employed an assay system that was isoform independent as supported by previous consensus panels.\textsuperscript{34} As well, the current study population predominantly enrolled male and white participants, therefore it will be of interest to further examine these findings in additional cohorts given the sex and racial differences that exist in Lp(a) concentrations. The study was not designed to achieve statistical significance within subgroups and tests for interaction were relatively underpowered to achieve statistical significance and therefore numbers needed to treat within subgroups should be considered exploratory. In addition, analyses that examined achieved values of Lp(a) and LDL-C are at risk of residual confounding and therefore do not directly imply causality.

In summary, the current findings suggest that plasma Lp(a) concentration is associated with the risk of CV events in patients with stable atherosclerotic disease regardless of LDL-C concentration. Further, Lp(a) may be useful for identifying individuals with a greater absolute benefit from evolocumab and lend support to the study of additional therapies that can lead to marked reductions in Lp(a) concentration.

**Sources of Funding**

The FOURIER trial was funded by Amgen
Disclosures

Dr. O’Donoghue reports institutional research grants from Amgen, Janssen, The Medicines Company, Eisai, GlaxoSmithKline and Astra Zeneca. Dr. Fazio has served as consultant for Amgen, Amarin, Kowa, Aegeon, and Akcea. Dr. Ezhov reports lecture fees Amgen, AstraZeneca, Berlin Chemie, Egis, KRKA, Pfizer, Recordati, and Sanofi; and has served as a consultant to and received grants from Amgen and Sanofi. Dr. Giugliano has received grants from Amgen, honoraria from Amgen, Daiichi Sankyo, Merck and consultant fees from Amgen, Amarin, Boehringer-Ingelheim, Bristol-Myers-Squibb, CVS Caremark, Daiichi Sankyo, GlaxoSmithKline, Lexicon, Merck, Portola and Pfizer. Dr. Huber reports lecture fees for Amgen, AstraZeneca, Pfizer and Sanofi Aventis. Dr. Jensen is supported by the Novo Nordisk Foundation (NNF18OC0031258), and reports lecture fees from Amgen, Pfizer, and Sanofi, and has received research grants from Amgen, Pfizer, and Sanofi. Dr. Mach has received research grants to the institution from Amgen, AstraZeneca, Eli Lilly, MSD, Novartis, Sanofi, and Pfizer. Dr. Ceska has received consulting fees from Amgen, Sanofi, Akcea, MSD, Boehringer Ingelheim. Dr. Sever has received research grants from Amgen and honoraria for advisory boards and speaker’s bureau from Amgen. Dr. Gouni-Berthold has received honoraria for consulting from Amgen, Akcea, Sanofi, Eli Lilly, Regeneron, and Aegereon. Drs. Wasserman and Lira Pineda are employees of Amgen and have stock interests in Amgen. Dr. Sabatine has received research grant support through Brigham and Women’s Hospital from Abbott Laboratories; Amgen; AstraZeneca; Critical Diagnostics; Daiichi-Sankyo; Eisai; Genzyme; Gilead; GlaxoSmithKline; Intarcia; Janssen Research and Development; Medicines Company; MedImmune; Merck; Novartis; Poxel; Pfizer; Roche Diagnostics; Takeda and has received consulting fees from Alnylam; Amgen; AstraZeneca; Bristol-Myers Squibb; CVS Caremark;
Dyrnamix; Esperion; Intarcia; Ionis; Janssen Research and Development; Medicines Company; MedImmune; Merck; MyoKardia; Novartis.

References


lipoprotein(a) in hypercholesterolemic patients receiving statin therapy: an analysis from the LDL-C Assessment with Proprotein Convertase Subtilisin Kexin Type 9 Monoclonal Antibody Inhibition Combined with Statin Therapy (LAPLACE)-Thrombolysis in Myocardial Infarction (TIMI) 57 trial. Circulation. 2013;128:962-969.


Table 1. Baseline characteristics by quartile of baseline Lp(a) in FOURIER.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Lp(a) Quartile 1 (n=6,565)</th>
<th>Lp(a) Quartile 2 (n=6,081)</th>
<th>Lp(a) Quartile 3 (n=6,217)</th>
<th>Lp(a) Quartile 4 (n=6,233)</th>
<th>Test for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤13 nM</td>
<td>&gt;13-37 nM</td>
<td>&gt;37-165 nM</td>
<td>&gt;165 nM</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>62.3 ± 9.0</td>
<td>62.8 ± 9.1</td>
<td>62.5 ± 9.1</td>
<td>62.6 ± 8.8</td>
<td>0.36</td>
</tr>
<tr>
<td>Male sex, n(%)</td>
<td>5,239 (79.8%)</td>
<td>4,638 (76.3%)</td>
<td>4,704 (75.7%)</td>
<td>4,262 (68.4%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>White race, n(%)</td>
<td>5,904 (89.9%)</td>
<td>5,245 (86.3%)</td>
<td>4,986 (80.2%)</td>
<td>5,365 (86.1%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>87.3 ± 17.1</td>
<td>84.8 ± 17.1</td>
<td>84.6 ± 17.6</td>
<td>84.6 ± 17.7</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Region, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>917 (14.0%)</td>
<td>898 (14.8%)</td>
<td>1,068 (17.2%)</td>
<td>1,455 (23.3%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Europe</td>
<td>4,567 (69.6%)</td>
<td>4,006 (65.9%)</td>
<td>3,682 (59.2%)</td>
<td>3,726 (59.8%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Latin America</td>
<td>425 (6.5%)</td>
<td>372 (6.1%)</td>
<td>462 (7.4%)</td>
<td>456 (7.3%)</td>
<td>0.008</td>
</tr>
<tr>
<td>Asia Pacific</td>
<td>656 (10.0%)</td>
<td>805 (13.2%)</td>
<td>1,005 (16.2%)</td>
<td>597 (9.6%)</td>
<td></td>
</tr>
<tr>
<td>Type of atherosclerosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of MI, n(%)</td>
<td>5,188 (79.0%)</td>
<td>4,803 (79.0%)</td>
<td>5,061 (81.4%)</td>
<td>5,203 (83.5%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>History of stroke, n(%)</td>
<td>1,369 (20.9%)</td>
<td>1,288 (21.2%)</td>
<td>1,221 (19.6%)</td>
<td>1,033 (16.6%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Peripheral artery disease, n(%)</td>
<td>859 (13.1%)</td>
<td>767 (12.6%)</td>
<td>814 (13.1%)</td>
<td>937 (15.0%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Cardiovascular risk factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension, n(%)</td>
<td>5,337 (81.3%)</td>
<td>4,912 (80.8%)</td>
<td>4,939 (79.4%)</td>
<td>5,003 (80.3%)</td>
<td>0.044</td>
</tr>
<tr>
<td>Diabetes, n(%)</td>
<td>2,671 (40.7%)</td>
<td>2,190 (36.0%)</td>
<td>2,246 (36.1%)</td>
<td>2,125 (34.1%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Current cigarette use, n(%)</td>
<td>1,966 (29.9%)</td>
<td>1,812 (29.8%)</td>
<td>1,772 (28.5%)</td>
<td>1,579 (25.3%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Statin use, n(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High intensity</td>
<td>4,434 (67.5%)</td>
<td>4,015 (66.0%)</td>
<td>4,222 (67.9%)</td>
<td>4,716 (75.7%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Moderate intensity</td>
<td>2,107 (32.1%)</td>
<td>2,058 (33.8%)</td>
<td>1,980 (31.8%)</td>
<td>1,504 (24.1%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Low intensity, unknown intensity, or no data</td>
<td>24 (0.4%)</td>
<td>8 (0.1%)</td>
<td>15 (0.2%)</td>
<td>13 (0.2%)</td>
<td>0.17</td>
</tr>
<tr>
<td>Ezetimibe, n(%)</td>
<td>213 (3.2%)</td>
<td>247 (4.1%)</td>
<td>306 (4.9%)</td>
<td>527 (8.5%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Biochemical Measures*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lp(a) (nmol/L)</td>
<td>6.5 (5.9)</td>
<td>23.0 (18.29)</td>
<td>88.0 (53.134)</td>
<td>216.0 (191.280)</td>
<td></td>
</tr>
<tr>
<td>LDL cholesterol (mg/dL)</td>
<td>93.2 ± 25.1</td>
<td>96.3 ± 27.1</td>
<td>98.0 ± 30.7</td>
<td>101.5 ± 27.2</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>170.6 ± 30.2</td>
<td>171.7 ± 32.1</td>
<td>172.0 ± 35.0</td>
<td>176.7 ± 32.8</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>45.2 ± 12.6</td>
<td>45.7 ± 12.3</td>
<td>45.6 ± 12.5</td>
<td>46.9 ± 13.1</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>144 (106, 199.5)</td>
<td>133.5 (100.5, 183)</td>
<td>127.5 (97, 172.5)</td>
<td>128 (97.5, 172)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Apolipoprotein-B (mg/dL)</td>
<td>84.6 ± 20.0</td>
<td>85.3 ± 20.8</td>
<td>85.4 ± 22.2</td>
<td>88.5 ± 20.5</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Non-HDL cholesterol (mg/dL)</td>
<td>125.3 ± 28.9</td>
<td>126.1 ± 31.2</td>
<td>126.5 ± 33.9</td>
<td>129.8 ± 31.1</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>hs-C-reactive protein (mg/L)</td>
<td>3.1 ± 5.1</td>
<td>3.5 ± 5.8</td>
<td>3.4 ± 5.6</td>
<td>3.6 ± 6.8</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

* All lipid measures are expressed as mean±SD, except for triglycerides and Lp(a) that are expressed as median (IQR)
Table 2. Unadjusted and adjusted risk of CV events in the placebo arm by baseline quartile of Lp(a) adjusting for LDL-C in the model.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Lp(a) Quartile 1 (n=6,565) ≤13nM</th>
<th>Lp(a) Quartile 2 (n=6,081) &gt;13-37nM</th>
<th>Lp(a) Quartile 3 (n=6,217) &gt;37-165nM</th>
<th>Lp(a) Quartile 4 (n=6,233) &gt;165nM</th>
<th>Test for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary heart death, MI or urgent coronary revascularization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Year KM Rate</td>
<td>8.1%</td>
<td>6.9%</td>
<td>9.7%</td>
<td>10.1%</td>
<td></td>
</tr>
<tr>
<td>Unadjusted HR (95% CI)</td>
<td>1.0 (0.71-1.07)</td>
<td>1.24 (1.02-1.50)</td>
<td>1.33 (1.10-1.60)</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td>Adjusted HR (95% CI)</td>
<td>1.0 (0.70-1.06)</td>
<td>1.17 (0.96-1.41)</td>
<td>1.22 (1.01-1.48)</td>
<td>0.004</td>
<td></td>
</tr>
</tbody>
</table>
| CV death, MI, stroke, hospitalization for unstable angina or urgent coronary revascularization
| 3-Year KM Rate                                                          | 13.9%                            | 11.9%                                | 16.6%                                | 15.9%                            |               |
| Unadjusted HR (95% CI)                                                  | 1.1 (0.77-1.05)                  | 1.21 (1.05-1.40)                     | 1.20 (1.04-1.38)                     | <0.001                           |               |
| Adjusted HR (95% CI)                                                    | 1.0 (0.76-1.04)                  | 1.17 (1.01-1.35)                     | 1.14 (0.98-1.32)                     | 0.006                            |               |
| CV death, MI or stroke                                                  |                                  |                                      |                                      |                                  |               |
| 3-Year KM Rate                                                          | 9.5%                             | 7.8%                                 | 11.7%                                | 10.3%                            |               |
| Unadjusted HR (95% CI)                                                  | 0.9 (0.72-1.07)                  | 1.21 (1.01-1.44)                     | 1.17 (0.98-1.40)                     | 0.006                            |               |
| Adjusted HR (95% CI)                                                    | 0.87 (0.71-1.05)                 | 1.13 (0.95-1.36)                     | 1.11 (0.92-1.33)                     | 0.06                             |               |
| Coronary death                                                          |                                  |                                      |                                      |                                  |               |
| 3-Year KM Rate                                                          | 1.6%                             | 1.3%                                 | 1.5%                                 | 2.0%                             |               |
| Unadjusted HR (95% CI)                                                  | 0.69 (0.42-1.12)                 | 1.04 (0.68-1.62)                     | 1.23 (0.81-1.87)                     | 0.13                             |               |
| Adjusted HR (95% CI)                                                    | 0.65 (0.40-1.07)                 | 0.93 (0.59-1.44)                     | 1.24 (0.81-1.89)                     | 0.16                             |               |
| Myocardial Infarction                                                   |                                  |                                      |                                      |                                  |               |
| 3-Year KM Rate                                                          | 5.5%                             | 5.5%                                 | 7.0%                                 | 6.8%                             |               |
| Unadjusted HR (95% CI)                                                  | 1.10 (0.86-1.40)                 | 1.33 (1.05-1.68)                     | 1.42 (1.12-1.78)                     | <0.001                           |               |
| Adjusted HR (95% CI)                                                    | 1.09 (0.85-1.40)                 | 1.24 (0.98-1.58)                     | 1.28 (1.01-1.62)                     | 0.02                             |               |
| Urgent coronary revascularization                                       |                                  |                                      |                                      |                                  |               |
| 3-Year KM Rate                                                          | 5.0%                             | 4.2%                                 | 6.2%                                 | 6.0%                             |               |
| Unadjusted HR (95% CI)                                                  | 0.84 (0.64-1.10)                 | 1.29 (1.01-1.65)                     | 1.30 (1.02-1.66)                     | 0.002                            |               |
| Adjusted HR (95% CI)                                                    | 0.84 (0.64-1.10)                 | 1.24 (0.97-1.59)                     | 1.18 (0.92-1.51)                     | 0.03                             |               |
| Stroke                                                                  |                                  |                                      |                                      |                                  |               |
| 3-Year KM Rate                                                          | 2.4%                             | 2.1%                                 | 3.3%                                 | 2.4%                             |               |
| Unadjusted HR (95% CI)                                                  | 0.85 (0.59-1.24)                 | 1.22 (0.87-1.72)                     | 0.92 (0.64-1.32)                     | 0.86                             |               |
| Adjusted HR (95% CI)                                                    | 0.83 (0.57-1.20)                 | 1.16 (0.83-1.64)                     | 0.93 (0.64-1.34)                     | 0.85                             |               |

Abbreviations: KM, Kaplan-Meier; CV, cardiovascular; MI, myocardial infarction; HR, hazard ratio; CI, confidence interval
Figure Legends

Figure 1. The efficacy of evolocumab by Lp(a) concentration. The efficacy of evolocumab versus placebo stratified by baseline Lp(a) concentration A/ split at the median and B/ split at 120 nmol/L (50mg/dl) for reducing CHD death, MI or urgent coronary revascularization. 

Abbreviations: ARR, absolute risk reduction; NNT, number needed to treat; CHD, coronary heart disease; MI, myocardial infarction

Figure 2. Treatment effect on major coronary events per unit decrease in Lp(a). Patients were stratified into deciles on the basis of baseline Lp(a), and the difference in Lp(a) and LDL-C at 48 weeks between the evolocumab and placebo arms was calculated within each decile. The hazard ratio (HR) for major coronary events with evolocumab versus placebo was also calculated within each decile. Weighted least square linear regression was then performed on the log transformed HR to examine the association between the treatment effect on major coronary events and per unit decrease in Lp(a), adjusting for differences in LDL-C. There was a significant relationship with a 15% lower risk (95% CI 2-26%, P=0.0199) per 25 nmol/L reduction in Lp(a) after adjusting for the change in LDL-C (model accounts for 57% of total variability of clinical benefit). Red dotted lines represent 95% confidence intervals.

Abbreviations: CHD, coronary heart disease; MI, myocardial infarction

Figure 3. The probability of coronary events by achieved Lp(a) concentration. The probability of CHD death, MI or urgent coronary revascularization conducted as a landmark analysis by achieved Lp(a) concentration at week 12 (adjusted HR 1.04, 95% CI 1.01-1.07,
P=0.01 per doubling of achieved Lp(a) concentration. Blue shaded area represents 95% confidence region. Abbreviations: CHD, coronary heart disease; MI, myocardial infarction
A/ Evolocumab vs Placebo

HR 0.93
(95% CI 0.80-1.08)

ARR=0.95%
NNT=105

Lp(a) <= median
Lp(a) > median

P interaction=0.07

B/ Evolocumab vs Placebo

HR 0.89
(95% CI 0.79-1.01)

ARR=1.41%
NNT=71

Lp(a) <=120nmol/L
Lp(a) >120nmol/L

P interaction=0.099
Probability of CHD death, MI, or urgent revascularization

Achieved Lp(a) at Week 12 (nmol/L)

- 0.06
- 0.08
- 0.10

Downloaded from http://ahajournals.org by on November 30, 2018